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ABSTRACT 

Let xl .... , xm be points in the solid unit sphere ofE n and let x belong to the 
m 

convex hull of xl ..... x,~. ThenI -  [ I x-x,[I <= (1 - Ilxll) (1 + tlx II) "-1. 
l = l  

This implies that all such products are bounded by (21m)m(m - 1) '~-i. 
Bounds are also given for other normed linear spaces. As an application a 

m 

bound is obtained for I P(Zo)l where p(z)= 1-[ (z -z,), H < 1, i= l  ..... m, 
i = l  

and p'(z0)=O. 

Introduction. In § 1 we consider m, not necessarily distinct, points x~, ..., Xm 
belonging to the solid unit sphere (unit bal l)of  the real n-dimensional Euclidean 
space E,. Let x belong to the convex hull H = H(xl , . . . ,Xm)  of  the points xi. 
The main result of this paper (Theorem 2) states that under these conditions 

llx-x, il _-<(,-i)x + )i x ii) 
i=l 

(ll x II is the Euclidean norm of x.) We obtain this bound by a simple, but lengthy, 
geometric argument, which proceeds by induction on the dimension of H (Theorem 
1). An immediate corollary to Theorem 2 states that 

t l x - - x ' t  I < ( m - - l )  m-l, 
i = 1  m ~ -  

for all sets ( x , x , . . . , X s )  satisfying It x~ll --< 1, i = 1 , . . . ,m,  and x E H(x l , " ' ,Xm) .  
In §2 we show that this corollary can also be deduced from Szeg6's maximum 

principle. This principle asserts that the product I-Ii~ll x -  x, ll attains, for 
fixed points xi, its maximum in any bounded closed region only at the boundary 

of this region. For  our purpose it is convenient to formulate a consequence of 

this principle for the convex polytope H ( x ,  .'.,xm) (Theorem 3). 
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In §3 we consider the solid unit sphere of an arbitrary normed linear space N. 
We denote by h,,(N)the supremum of ~7= ~1] x - xi [] for 11 ]1 x~ ][ __< 1, i = 1, ..., m, 
and all x e H(xa, ..., xm) and obtain bounds for h,,(N). The lower bound is attained 
in the Euclidean case (Corollary to Theorem 2) and the upper bound is attained 
for spaces with the supremum norm and for spaces with the L~ norm. We conclude 
this paper with a simple application of Theorem 2 to complex polynomials having 
all their roots in the unit disk. 

As the title of this paper may be misleading, we stress that the m (not neces- 
sarily distinct) points are in an arbitrary position and that x is always restricted to 
their convex hull H. We consider the product of all the m distances ~ x - x~ ][, 
i = 1,. .-,m, and not only the product of the distances from the vertices of the 
convex polytope H. OC and int C denote the boundary and the interior of the 
convex set C relative to the flat (linear variety) of smallest dimension containing C. 
This dimension is denoted by dim C. An edge is a one-dimensional face of the 
convex polytope H (belonging to OH). The author wishes to thank Dr.A. Ginzburg 
of the Technion, Haifa, for his help in the preparation of this paper. 

1. Polytopes in euclidean space. 
THEOREM 1. Let Sn be a solid sphere of En and let x, xl , '" ,Xm, (m >= 2), be 

(not necessarily distinct) points of S~ such that x belongs to the convex hull 
H = H(x~,---,xm) of xl ,  "",Xm. Then there exists points xl', ...,x,~ in S~ such that 
x lies on an edge of their convex hull H' = H(x~,'",Xm) and 

(1) i ~  m II x -  x, IL I1 II x -  x; II 
i = 1  i = 1  

Proof. The left hand side of (1) vanishes only if x coincides with one of the xt. 
¢ t l ! In this case we choose x2 = x3 . . . . .  Xm = x and take as xl any point of  S, 

different from x. We shall in the sequel disregard this trivial case and always 
assume that x v~ xi, i = 1,..., m. This and x ~ H(xl ,  ..., Xm) imply x e int Sn. In the 
conclusion of the theorem x will be an interior point of an edge of H'. 

Let k = dim H and let Pk be the k-flat carrying H. S k = S n n Pk is a solid 
k-sphere containing all the x i. We shall find points xi', i =  1, . . . ,m, belonging 
to Sk, and hence also to Sn, satisfying the requirements of the conclusion. The 
proof will be by induction on the dimension k of H and we disregard E~ and S,. 

We denote the center of Sk by Ck. For x e int Sk, x # Ck, we denote the point 
of Sk farthest away from x by ak(X ) and we denote the point of ask nearest to x by 
bk(X); i.e. ak(x ) and bk(X) are the endpoints of the diameter through x. ak(Ck) and 
bk(ck) are the endpoints of an arbitrary diameter of Sk. For the induction it is 
convenient to prove more than stated in the theorem; we show that H '  can always 
be chosen as a segment or as a triangle. Precisely, we prove the following strong 
version of Theorem 1: 
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Let  k = dim H(x l ,  " ' ,xm) ,  let S k be a solid k-sphere such that xi e Sk, i = 1, . . . ,m, 

and let x e l l ,  x # xi, i = 1 , . . . ,m .  We  can choose the m points x; o f  S k which 

satisfy (1) and f o r  which x lies on the segment  x'lx'2 in the fo l lowing  way:  
t ! i 

x 1 # x 2, x 1 # ag(x) and ( for  m => 3) xa' = " " "  = Xm' = ak(X).  
We prove the strong version by induction on k. For  k = I we choose x~' = b~(x) 

' =  ' = = ' = a, (x) .  (1) is obvious and H '  = H' .  andx2  Xa "" x ,  Sl,  h e n c e x e  
For k = 2 we have three possibilities. (a) x = c 2. Set x~ = b2(c2) and 

, , , ( )  
X 2  = X 3  ----" " ' "  ~ X m  ~ "  a 2  c 2  • 

(b) x e all .  x is thus an interior point of  the segment xxx2. (We avoid sub- 
subscripts. A subset of  p points of  the given set will always be denoted by Xl, . . . ,  x r )  

I ! I l 

Set X 1 = Xl( ~ a2(x)) , X 2 = X 2 and Xa . . . . .  Xm = a2(x). 
(C) x e i n t H ,  x # c2. Let r be the radius through x(r  = c2b2(x ) )  and let d be 

its intersection with dH. If  d is a vertex of  H or, more general, if d is one of the 
l ! l l 

points x~, then we set x 1 = d and x 2 = x 3 . . . . .  x m = a2(x ). If  d is not a vertex 
of  H, then it is an interior point of  the side (edge) xax2 of H. Let l be the line 

through x parallel to this segment x ,x2 .  Clearly, c2 ¢ I. Denote the intersection 
points of I and aS2 by x~ and x~, choosing x'i on the same side of  r as x~, i = 1,2. 
(Cf. Figure 1). Then we have for i = 1,2 

oL=Jx) b;~tx) 

x~ 
Figure 1 

(2) II x -  x, II < II x - x ; l l .  

Indeed, let T ,  i = 1,2, be the triangle bounded by the segment x x / ( o n  l), 

by the segment x b2(x) (on r) and by the smaller arc of  aS2 between b2(x ) and x{. 
As T1 u T2 is the segment of  $2 cut off by I which does not contain the center c2, 
it follows that the angle of  T~ at x~' is smaller than n /2 .  T( is thus contained in the 

disk with center x and radius IIx- x;l[.gs this implies (2). We choose 
I ! again x3 . . . . .  Xm = a2(x) and thus proved the strong version for k = 2. 
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We now assume that it holds for all H with dim H < k and prove it for dim H 

= k(k > 3). We have again three cases. (a ' )  x = ck. As in (a), we put the x / i n  
the endpoints of  an arbitrary diameter. 

(b ')  x e H~, where H l = H(xl , . . . ,xp)  is of  dimension l with 1 < l < k (hence 

I < p < m). Let Pl be the/ - f ia t  carrying Hi and St = St ~ P t .  By the assumption 

of our induction we have p points Yi in the sol id/-sphere  Si, Yl ~ Y2, Yl ~ at(x) 
and Y3 . . . . .  yp = al(x), such that x lies on the segment YlY2 and such that  

P P 

(3) 11 I! x - x, II z 11 II x - y i II. 
i = 1  i = l  

t ! I r 
We set x'l = Y l ,  x 2 =  Y2 and put x'a . . . . .  Xp=Xp+l . . . . .  xm=ak(x).  

(Only if Ck~Pl, then at(x)= ak(x); but always x ' l ( = y l ) ~ a k ( X) . )  (3) and the 
definition o f  ak(X) imply (1) and the strong version is established for this case (b') .  
Note that  this covers the case x ~ dH. 

(c') x e int H, x --/: Ck. Let again r be the radius through x (r = Ckbk(X)) and let 
d be its intersection with OH. I f  d is a vertex of H or, more general, if d is one of the 

t ! l l 
points xi, then we set xl = d and x2 = x3 . . . . .  Xra = ak(x).I fd ~ X i, i = 1, "" ,m,  
then it is an interior point of  a /-dimensional face Hi of  the convex polytope 

H(H l c t~H), 1 < l < k. Let x l , . - . ,xp  (l < p < m) be those points of  the original 
set (xl ,  "",x, ,)  which lie in H~. Then H t = H(xl, . . . ,xp) .  Let Ql be the/-f la t  carrying 

H I. As d is an interior point of H~, it follows that d is the only point on the radius r 

and in Qt: ckq~Q~, x~Q~. Let Pl be the /-flat through x parallel to Ql;ck~Pt. 
For i = l, . . . ,p  let ri be the radius of  S k going through x~ and denote Pl (3 r i = z t. 
We thus project H t =  H(x~,...,xp), Ht c Q~, from Ck into the l-polytope 
H~= H(z~,...,zp), H,'~ Pl. d e i n t  Hi implies x ~ i n t  H~. We project once more.  
This time the p points z i are projected f rom x onto aS~; i.e. let l* be the ray from x 
through z~ (l* c Pl) and denote OSk n l*, = x~'. 

t r  t l  Clearly, H['= H(x';, "",Xp) is a convex l-polytope, H; ~ H/ '  and x e in t  H l . 
(Figure 2 illustrates our construction for k = 3, 1 = 2 and p = 3. The parallel 

triangles H2 and H~ are not necessarily normal to r. H~ and H~' lie in the same 

plane P2 but are in general not similar.) 

For each i, i = 1, . . . ,p,  let P ibe  the plane (2- fiat) defined by the radii r and ri. 

c~, x and d are on r;  Ck, Zi and xi are on ri; d and xl are in Ql and therefore on the 

line pi n Qi; x, z~ and x['  are in Pi and therefore on the parallel line li = pi n Pt. 
(li contains the ray l* from x through z~.) All these points lie in the disk $2 i = Sk n pl 

i i with the center c2 = Ck. C2, X and d lie in this order on the radius r of  S~ ; xi ~ r 

and x~' is the intersection point of  l* with t3S~, where l* is the ray from x parallel 

to the segment d x~. x~ and x~' are on the same side of  r. We thus have the same 
situation as in case (c) of  k = 2. (We use now x~' instead of x/.) In analogy to (2), 

it follows that 

( 4 )  gill < 11 - II, 
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II  

H~ 

II  

X3 

II 

I 

b3(Xl 

Figure 2 

(In Figure 2 we assumed that P i is the plane of drawing. Compare with the lower 
half of  Figure 1.) 

Consider now the m points x~', ..., xp', xp+ l, "", xm. They all belong to Sk, x lies 
in their convex hull and, by (4), the product of  the distances o f x  from these points 
is larger than the original product I-[,~=1 II x -  xi I1" If, by chance, 

tP dim H(x'~, ...,xp, xp+l, "",xm) < k 

(i.e. if a vertex of the original H = H(xD'", xm) lies in Pz), then the strong version 
follows by the assumption of our induction. If not, then we only note that now p of 

r !  the points, namely x~,...,x~, belong to the /-flat Pt (1 =< I < k) and that 
x e H(x~,..., x~') ( = HI'). We therefore reduced this case (c') to the former case 
(b') and thus completed the proof of the strong version. Theorem 1 is thus 
established. 

This theorem implies our main result, which we formulate only for the solid 
unit sphere U . =  {x: tlxll-<_ 1} (c. = 0) of  En. 

THEORI~M 2. Let x,x~,...,xm(m >= 2) be (not necessarily distinct) points of 
the solid unit sphere U. of E. such that x belongs to the convex hull of xl, ...,xm. 
Then 
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~5) Irl tl x - x, 11 --< <1 - I1 x II) <1 + I1 x 11) - - 1  
i = 1  

For 0 <  llxl[ < 1 equality holds in (5) only under the following conditions: 
11 x,[l-:  1, i =  1, , m ,  m - 2 of the x, coincide with the point a(x) of U, farthest 
away from x, and x lies on the chord bounded by the two remaining points. 

Proof. If x coincides with one of the xi, then there is nothing to prove; this 
must happen if II x 11 -- 1 i f  x = 0, then (5) is obvious and equality holds only if 
!I x, tl = 1, i = 1 , ,  m Let 0 < 11 x 11 < 1, x ~ x,, i - -  1 , ,  m By Theorem 1 we 
can assume that x is an interior point of the edge xtx2 of H = H(xt,...,xm). 
If  we do not already have the situation mentioned in the equality statement, then 
we move x~ and x2 into the endpoints of their chord and, for m > 3, move xa, ...,xm 
into a(x). This increases the product and yields the conditions of the equality 

statement. But now l-It=311 x - x , l [ - - I [ x - a < x ) l l  --~ =(1 + Ilxll) - -~  The pro- 
duct 1t x - x l II tl x - x~ tl of  the segments of a chord through x depends only on 
x. Hence, denoting the point of tU  n nearest to x by b(x), we have 

II x - x~ I1 II x - x= II -- 11 x - b<x)II 11 x - a(x)II = ( 1  - II x II) ~1 + II x It). 

q - h i s  completes the proof of Theorem 2 and shows also that the strong version of 
l l ! ¢ 

Theorem 1 can be further strengthened: 11 = bk(x), x2 = x3 . . . . .  xm = ak(X). 

The function (1 - II x 11) ~1 + I1 x I1) " -1  attains its maximum only at II x II 
= ( m -  2)/m. We thus obtain from Theorem 2 the following 

COROLLARY. The assumptions of Theorem 2 imply 

(6) H I l x - x ,  ll--< m ( m - 1 ) m - l "  
i = 1  

Equality holds in (6) only under the following conditions: tlxll = < m - 2 ) / m ,  
11 x, 11 -- 1, i-- 1 , ,  m, m - 2 of the xi coincide with a(x), and x lies on the chord 
bounded by the two remaining points. 

2. Szeg6's maximum principle. We show that the above corollary is also a 
consequence of the maximum principle for the product I'I,ml I I x - x ,  II <See 
P61ya-Szeg/5 [4, section III problem 301]; and [5], [3].) The proof in [4, p. 328] 
not merely shows that this product attains its maximum in any bounded closed 
region D of En only at dD, but establishes that for any plane P the maximum in 
P ¢3 O is taken only at d(P ¢3 D). For convex polytopes this implies 

THEOREM 3. Let xt , . . . ,x, ,  be points in E, such that at least two of them are 
distinct. For x varying in the convex hull H = H(xl,...,xm ), H~'=I I! x - x ,  II 
attains its maximum only at interior points of edges of H. 

For completeness we outline the proof. For dim H = 1 there is nothing to prove. 
For dim H --- 2 identify the plane carrying H with the plane of the complex num- 
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hers and apply the (ordinary) maximum principle to the polynomial ]-[~'= 1 (z - zi). 
For dim H = k, 2 < k < n, it suffices to consider the k-fiat Ek carrying H. Let 
e >  0 and set H~= H -  [,.)m=l { [ I x -  x,[ I < e}; for small e the maximum of the 
product will be taken in H,. Let P be any plane such that P n H~ ~ ~ .  Choose 
coordinates (~1, "", ~k) in Ek such that P satisfies ¢i = ci, i = 3, ..., k. For x e P set 
log l-[~---, II x - x, It = f ( ¢ ' ,  ¢2). If x e P n H~, then f(¢x, ¢2) e C 2. Using that not 
all the x~ lie in P, we obtain ~2f/d~2 + ~2f/d~2 > 0. This excludes the possibility 
of a maximum at interior points of P r3 H,. Varying the c~ (i = 3,-.., k), it follows 
that l-It'-- 1 II x - x, 11 takes its maximum only at ell .  If this maximum were taken 
at an interior point of a/-dimensional face of H with l > 1, then we would again 
obtain a contradiction by intersecting (for l > 2) this face with planes or by 
considering (for 1 = 2) the plane carrying this face. 

Theorem 3 implies the above corollary. Indeed, to find max l-I~= 1 11 x -  x, [I 
for all sets (x, xl, ..., x,,) satisfying IIx, It x and xeH(xl , . . . , x , , ) ,  it suffices by 
Theorem 3 to consider only those sets for which x is an interior point of an edge 
of H. We continue as in the proof of Theorem 2 and show that for such a set the 
product is bounded by ( 1 -  Ilxll) (1 + l lx l l : - ' ,  Varying I[xlt, we obtain (6). 

Theorem 2 itself does not follow from Theorem 3 and seems to require a geo- 
metric proof. The property stated in Theorem 1 for the solid spheres is not valid 
for all convex bodies C of E,. Indeed, let C be a regular simplex with center c and 
let x~, i = 1,..., n + 1, be the vertices of C. As for any y e C, y ~ x~, i = 1,..., n + 1, 
we have [Ic - y It < 11 c - xl II, it follows that for any set of n + 1 points x /o f  C, 
such that c belongs to an edge of their convex hull H' ,  the relation 

n + l  n + l  

1-I [Ic-x; [I < l-I 
i = 1  i = 1  

holds. 
3. Normed linear spaces. 

IIc- x, II 

Let x l , ' . . ,x , ,  be points in the solid unit sphere of 
n-dimensional unitary (complex Euclidean) space. As this space is just the real 
Euclidean space of dimension 2n, it follows that Theorem 2 and its Corollary 
hold also for this space. Moreover, as they deal only with the convex hull of m 
points, it follows that (5) and (6) and the corresponding equality statements 
remain valid for (real or complex) Hilbert space. For normed linear spaces the 
following result, related to the Corollary, holds. 

THEOREM 4. Let N be a (real or complex) normed linear space and let 
U =  {x; Ilxll < I} be its solid unit sphere. For m > 2 set 

(7) hm(N) = sup f i  I1 x - x, ll, 
= 1  

where the supremum is taken over all sets (x,xl,. . . ,xm) satisfying x ieU,  
i =  1, . . . ,m and xeH(xt , . . . ,xm).  Then 
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(8) m < hm(N) < (m - 1) m. 

Moreover, 

(2)- (9) hm(N ) = -~ (m - 1) m 

for  spaces with the supremum norm (l°°(n), n > m; l°°; L °°) and for  spaces with 
the LI norm (P(n), n > m; 11; 12). 

The Corollary implies that in the Euclidean case (/2(n) = En, any n; 12; L 2) hm(N) 
attains the lower bound of (8). 

Proof. To obtain the first inequality sign of (8) it suffices to consider any 
diameter of  U:let  II a II -- land set ~ l = - a . x ~  . . . . .  x . =  a and ~ = ( ( 2 -  m)/m) a 

To prove the second inequality of(8) we note that the assumptions on(x, xl,...,xm) 
are: 

(10) tlx, ll__<l,~= ~ fix,, t,>o, ~ ti=l, i=l,...,m. 
i = l  i = 1  

This implies 

f i x -  x, ll -- I[( t , -  1)x, + E t,x, II < ( 1 - , , )  IIx, II + x 
j ~ t  j~ l  

(11) < ( l - t , ) +  ~ t j = 2 ( 1 - t , ) ,  i = l , . . . , m .  
j :# i  

Hence, 

tjIIx, tl 

(12) II x - x, II < 2 .  (1 - ,,) <= 2 .  1 - 
i = l  = 

(8) is thus established. 
If, under the assumption (10), 

(13) ~I 11 x - x, II = m (m - 1) m, 
i = l  

then, using (11) and (12), it follows that 

(14) II x, ll = 1, ti = --,1 i =  1, . . . ,m. 
m 

To prove (9) we give sets (x,xl ,  "",Xm) satisfying (14) and (13). For l~°(n) and 
P(n), n > m, we denote xi=(~i l , ' " ,~in) ,  i =  1,. . . ,m. For l°°(n)we choose 
~k = 1 -2cSik (i = 1, . . . ,m; k = 1,...,n). Then 

k m j # t  m 
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This proves (13) and the same example holds for l =~. For L°°(0, 1) we may e.g. 
take m distinct Rademacher functions. 

For  l l (n )  we choose ~k = 6~k (i = 1,-. . ,ra; k = 1, ...,n). Then 

1 6 2m - 2 
k = l  I'D, 

The same example holds for l l and for U(0, 1) we may e.g. take xi(t) = mSik for 

(k  - 1 ) / m  < t < k / m  ( i , k  = 1, . . . ,m) .  This completes the proof  of Theorem 4. 
Note that in the just considered cases the dimension of the maximizing H ( x l , . . . ,  x,,) 

is necessarily m - 1; this is in contrast with the Euclidean case. 
We add the following remark. If N is finite dimensional, then, owing to the 

compactness of the solid unit sphere, the supremum in (7) has to be attained. 
If  (9) holds for a finite dimensional space, it follows therefore that there exist m 

points x,, ]Ix, !I = 1 satisfying 

i \ r t l  / Fn .i g i \ lcgl / Fn j ¢: i 

As for 1 < p < ~ equality in Minkowski's inequality implies linear dependence, 
(15) cannot hold for m > 2 and N = lP(n) with 1 < p < oo. More general, by a 

result of Achieser and Krein (quoted in [1, p. 82] and [2,p. 112]) it follows that 
(15) cannot hold for rotund spaces (if m > 2): for finite dimensional rotund 
spaces and m > 2 the second inequality sign of (8) is strict. 

4. The absolute value of a polynomial at critical points. We conclude with a 
simple application of  Theorem 2. 

" II THEOREM 5. Le t  Pro(z) = I-L=1 ( z -  zi), m > 2, a n d  a s sume  that  z~ < 1, 
i = 1, . . . ,  m. T h e n  p~,(zo) = 0 impl ies  

(16) I p,.(Zo) I -_ (1 - i z o l ) ( 1  ÷ Izol) "-1 

For m > 3 and zo ~ O, l Zo I ~ t equality holds in (16) only i f  

m - 2  
z o - - -  e ~" a n d  p,,(z) = (z  - e i') (z  + el') " -  l 

I n  

Proof. By the theorem of Gauss and Lucas [-4, section III, problem 31] 

p ' ( z o )  = 0 implies Zo • H ( z l , . . . ,  z,,). Inequality (5) of Theorem 2 (for E2) gives (16). 
Let now m > 3 and 0 < Izol < 1 By Theorem 2 we can have equality in (16) 

only if I z i ] =  1 for all i and if m -  2 of these roots coincide, say 

Z 3 = . . .  ~_ Z m -- .  __ e i~. 

If dim H = 2, then it follows from the Gauss-Lucas theorem that the two critical 
points different from - e i~ are in the interior of the triangle H and Theorem 2 

excludes equality in (16). There remains thus only the one dimensional case: 
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zl  = e i`, z2 = z3 . . . . .  zm = - e~'; the only critical point  different f rom - e ~" is 

zo = ( ( m - 2 ) / m ) e  ~ and in this case equality holds in (16). 

For m = 2 equa l i ty  holds in (16) if lz 1 [= [z2 l =  1 (zo = (Zl + zD/2). For 
m > 3 the other cases o f  equality are trivial: I f  p.~(0) = 0 and all I z~] = 1, then 

both  sides o f  (16) equal 1, and at multiple roots  on the unit circle both  sides vanish. 
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